Моделирование миграционных и демографических процессов с использованием FLAME GPU
01.02.2022 22:39:00

В данной статье представлен подход к моделированию миграционных и демографических процессов с использованием платформы FLAME GPU, предназначенной для крупномасштабного агент-ориентированного моделирования. Данный подход основан на ранее предложенной имитационной модели взаимодействия двух сообществ: мигрантов и коренных жителей, реализованной в системе AnyLogic. Такая модель имела относительно малую размерность дискретного пространства для существования популяций и детерминированную систему принятия решений каждого агента. Вместе с тем, наличие множественных взаимодействий между агентами и переходов между их состояниями обуславливает высокую вычислительную сложность подобной модели. Использование FLAME GPU позволило существенно расширить возможности проведения численных экспериментов, главным образом, за счет распараллеливания вычислительных процессов на уровне каждого агента и занимаемого им ресурса, а также реализации механизма множественных вычислений класса Монте-Карло. В результате исследованы зависимости ключевых характеристик рассматриваемой системы (в частности, общей численности населения, доли мигрантов, количества ассимилированных мигрантов, темпов роста ВВП и др.) от наиболее важных параметров модели (например, доли новых мигрантов, государственных расходов на интеграцию, периодичности создания новых рабочих мест и др.). Предложенный подход может быть использован для разработки систем поддержки принятия решений по планированию найма новых сотрудников на основе прогнозной динамики миграционных и демографических процессов.

1.pdf скачан: 4раз.
rss
Назад
Статьи
Суперкомпьютерные технологии Демография Cуперкомпьютерные технологии Агент-ориентированные модели БРИКС пешеходная модель METIS Высокопроизводительные вычисления Транспортные модели МЁБИУС Монография Parallel computing Параллельные вычисления Биомедицина Axum SWAGES Публикации Экономические процессы цунами CUDA Microsoft Social Simulation Conference ГИС Междисциплинарное исследование Новости Революция Эксафлопная производительность Case HPS POLARIS TSUBAME Методология запуска О проекте Социальная сеть Эпидемия XAXIS Иерархическая платформа Механизм раделяемой памяти Пандемия Ссылки Ядерная атака на США D-MASON Repast Исследования Моделирование мира Пандора Стратегии распараллеливания автоматическое распараллеливание FuturICT Russian Supercomputing Days Агент-ориентированный подход Исторические процессы Моделирование эпидемий Суперкомпьютерная Академия агентная модель GPU SEGMEnT Клеточные автоматы Модель экономики Евросоюза Пространственно-распределенные агентные модели Суперкомпьютерные дни большие данные HPABM SSC Контакты Мониторинг планеты Пространственные модели