
В статье представлена конструкция демографической агент-ориентированной модели (АОМ), разработанной в системе проектирования МЁБИУС, которая позволяет создавать АОМ с численностью популяций до 109 агентов, эффективно масштабируемые при запуске на суперкомпьютерах. Система МЁБИУС поддерживает также динамическое изменение численности и пространственного распределения агентов за счет имитации процессов исчезновения агентов и появления новых. Конструкция апробирована при реализации крупномасштабной демографической АОМ России, в которой имитируются процессы естественного движения населения страны в разрезе регионов. Агентами в модели являются люди, которые обмениваются сообщениями, поддерживают родственные связи, рожают детей, стареют и умирают. Показаны результаты апробации АОМ России на реальных статистических данных. Получены прогнозы основных демографических показателей как для России в целом, так и для всех регионов при различных сценариях изменения суммарного коэффициента рождаемости. Показана дифференциация регионов по ожидаемой динамике численности населения и его возрастной структуры. Оценено влияние отдельных социально-экономических факторов на динамику суммарного коэффициента рождаемости.

На основе разработанной авторами ранее программы (регистрационный номер RU 2019614589) была разработана система, позволяющая создавать эффективно масштабируемые агент-ориентированные модели с популяциями агентов разных типов до 1 млрд. агентов. Система поддерживает динамическое изменение численности и пространственного распределения агентов за счет имитации процессов исчезновения агентов и появления новых. Апробирована при реализации крупномасштабной демографической агент-ориентированной модели России, в которой имитируются основные процессы движения населения страны в разрезе регионов. Агентами в ней являются люди, которые обмениваются сообщениями, образуют семьи, поддерживают родственные связи, рожают детей, стареют и умирают. Тестирование модели проводилось на суперкомпьютерах Ломоносов-2 (МГУ) и Млечный путь-2 (Гуанчжоу, Китай). Система кроссплатформенная, написана на C++ и С#. Объем 66 Мб.

В статье представлена агент-ориентированная демографическая модель России, предназначенная для запуска на суперкомпьютерах. Использованные в модели технологии позволяют создавать искусственное общество с числом агентов до 109 и эффективно распараллеливать работу симулятора. Программный комплекс, созданный для реализации модели, объединяет отдельные подсистемы, написанные на языках программирования разного уровня. С одной стороны, это обеспечивает эффективную балансировку нагрузки между вычислительными процессами и обмен сообщениями между агентами (реализовано на языке С++), а с другой, упрощает разработку блоков модели, реализующих симуляцию демографических процессов (реализовано на С#). Демографические процессы в модели имитируются на основе действий отдельных агентов с учетом их родственных связей, которые они поддерживают, обмениваясь сообщениями. Ключевыми особенностями демографической агент-ориентированной модели являются следующие: а) динамическое изменение численности и состава популяции агентов – удаление части агентов (их «смерть») и возникновение новых («рождение»); и б) разделение действий, выполняемых на шаге имитации по этапам, в конце каждого из которых может происходить пересмотр общих параметров, относящихся к регионам или группам агентов, и/или обмен сообщениями между агентами. Модель в ходе компьютерных экспериментов прошла апробацию на реальных данных и показала высокие результаты при тестировании по следующим параметрам: а) качество воссоздания на популяции агентов возрастно-половой структуры населения как по стране в целом, так и в разрезе регионов; б) устойчивость работы модели и низкая погрешность получаемых результатов прогнозирования основных демографических показателей в сравнении с вариантами официального прогноза Росстата; в) эффективность распараллеливания программного кода при запуске на суперкомпьютерах. Модель является базовой для разрабатываемой комплексной региональной имитационной модели, однако может быть полезна как самостоятельный инструмент прогнозирования.
В статье рассматривается алгоритм декомпозиции графа, применительно к реализации масштабируемой агент-ориентированной модели, с целью эффективной балансировки нагрузки между узлами суперкомпьютера. Агенты модели одновременно задействованы в нескольких процессах, для которых важны различные социальные связи (семья, соседи, друзья и др.).

Разработана система проектирования агент-ориентированных моделей для запуска на суперкомпьютерах, позволяющая эффективно масштабировать агент-ориентированные модели до 1 млрд. агентов. Она была применена при реализации крупномасштабной агентной модели стран Евразии, имитирующей основные процессы движения населения этих стран, а также последствия реализации крупных инфраструктурных проектов как результата действий множества самостоятельных агентов. Тестирование модели было проведено на различных суперкомпьютерах (Ломоносов (МГУ), Млечный путь-2 (Гуанчжоу, Китай)).
Исследования 1 - 5 из 12
Начало | Пред. | 1 2 3 | След. | Конец